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Abstract

We present a formulation for coupling atomistic and continuum simulation methods for application to both quasistatic
and dynamic analyses. In our formulation, a coarse-scale continuum discretization is assumed to cover all parts of the
computational domain with atomistic crystals introduced only in regions of interest. The geometry of the discretization
and crystal are allowed to overlap arbitrarily. Our approach uses interpolation and projection operators to link the kine-
matics of each region, which are then used to formulate a system potential energy from which we derive coupled expres-
sions for the forces acting in each region. A hyperelastic constitutive formulation is used to compute the stress response of
the defect-free continuum with constitutive properties derived from the Cauchy–Born rule. A correction to the Cauchy–
Born rule is introduced in the overlap region to minimize fictitious boundary effects. Features of our approach will be dem-
onstrated with simulations in one, two and three dimensions.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Atomistic simulation; Continuum mechanics; Coupling; Finite elements
1. Introduction

Aprimary objective of modernmaterials modeling is to predict the material response and failure governed by
deformation mechanisms, and to assess the mechanical reliability of components. These material deformation
mechanisms operate at specific length scales, which vary from nanometers tomicrons.Multi-scale materials sim-
ulations have been the focus of many studies [1] using techniques such as atomistic simulation, phase-field
calculations, and finite element (FE) analysis. Continuum mechanical modeling efforts have evolved beyond
using ad hoc failure criteria to include cohesive approaches for surface separation and damage accumulation
models for bulk material degradation. However, these techniques only capture anticipated deformation
phenomena. Atomistic simulation procedures, such as molecular statics (MS) and dynamics (MD), use simple
interatomic potentials as the underlying constitutive relation between material particles and allow the derived
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forces to govern the basic physics of the system�s response to an applied load. These potentials use parameters
fitted from ab initio calculations and physical measurements of material properties. Atomistic simulation oper-
ates at the length scale of interatomic separation, and has the ability to display competing mechanisms of mate-
rial deformation, such as fracture, dislocation nucleation and propagation, and void nucleation, growth and
coalescence. However, limits of computational power prohibits analysis of micro-scale systems using only atom-
istic simulation, even in large-scale, parallel calculations.

It is clear that some coupled methodology must be established to combine the strengths of both atomistic
and continuum modeling. Although this field has acquired a substantial history, it remains an active area of
research. Among the many challenges with developing coupled approaches, the main issue is eliminating
fictitious boundary effects. For dynamic problems, this issue typically involves avoiding spurious wave reflec-
tions, while for quasistatic problems, the issue is fictitious forces. The appearance of fictitious forces in coupled
atomistic–continuum systems stems from an inconsistency in the formulation of the potential energy and is
therefore an issue for dynamic analysis as well, though it tends to be treated as secondary to or completely
overlooked compared with the wave reflection issue within the dynamic context. As one might expect, the issue
of fictitious forces is not limited to coupled atomistic–continuum formulations and indeed has been studied
within the context of multiscale continuum methods by Fish and Yuan [2], arising as one attempts to reconcile
the coarse and fine scale representations of the solution.

In early work by Kohlhoff and collaborators [3,4], they developed a methodology that combined finite ele-
ment analysis with atomistic modeling, named FEAt. The FEAt model uses an atomic lattice surrounded by
an FE mesh with a limited overlap region that enforces boundary conditions on both atomistic and continuum
domains. Consistency is achieved by requiring the strains in the overlap region to be equal for both the atoms
and the continuum, and by matching the elastic properties of the continuum constitutive model to those de-
rived from the governing interatomic potential. In [4], non-linear elasticity is used via a Taylor series expan-
sion of elastic energy about strain that contains first, second and third order elastic constants. The FEAt
model works well for static simulations, but displays some anomalous behavior for dynamics. However, it
has the inherent disadvantage that the FE mesh within the overlap region must be refined so that nodal spac-
ing is at the atomic scale with nodal positions dictated by the crystal lattice structure.

More recently, several methods have been introduced that attempt to improve upon the original efforts by
Kohlhoff et al. These include the Quasicontinuum (QC) method by Tadmor et al. [5], coarse-grained molecular
dynamics (CGMD) by Rudd and Broughton [6], molecular-atomistic-ab initio dynamics (MAAD) by Brough-
ton et al. [7], and the bridging scale decomposition (BSD) by Wagner and Liu [8]. The QC method uses an FE
representation of the displacement field over the entire domain, requiring mesh refinement to the atomic scale
in regions of severe deformation. The strain energy within an element is determined from a single ‘‘represen-
tative atom’’ embedded in a locally constructed crystallite. At lower levels of deformation, elements may be
much larger than the atomistic length scale, and the lattice is assumed to deform homogeneously as described
by the continuum deformation gradient. Deformation of increasing severity triggers mesh refinement until the
element size is reduced to the atomic scale. Under these conditions, the local crystallite spans multiple ele-
ments, leading to a non-local calculation of the strain energy. Consistency between refined and coarse areas
is achieved by using finite deformation elasticity [9] and the Cauchy–Born rule [10,11] that equates interatomic
bond energy to continuum potential energy in order to develop a non-linear continuum constitutive model
based on the interatomic potential used for atomistic simulation. While the QC approach allows a blending
between atomistic and continuum regions, it possess the disadvantages of a reliance on adaptive mesh refine-
ment to the atomic scale, a computationally intensive task, and an inability to eliminate fictitious boundary
effects at the local/non-local boundary.

Coarse-grained molecular dynamics consists of replacing the underlying atomic lattice with nodes repre-
senting either individual atoms or a weighted average collection of atoms. The total energy of the system is
calculated from the potential and kinetic energies of the nodes plus a thermal energy term for the missing de-
grees of freedom assumed to be at a uniform temperature. CGMD produces phonon spectra with wavelength
dependencies similar to those for pure atomistics; however, CGMD does possess wavelength-dependent lim-
itations on energy transmission. Newer versions of CGMD include implementation of a generalized Langevin
equation (GLE) to dissipate high frequency motions not representable in the coarser-scaled regions [12] and
development of CGMD is ongoing.
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More similar to Kohlhoff et al.�s methodology, the MAAD approach separates the physical system into
distinct MD and FE regions. The system�s total Hamiltonian consists of contributions from each individ-
ual region as well as a contribution from ‘‘hand-shaking’’ between regions. The FE mesh in this hand-
shaking zone is refined to the atomic scale and nodes occupy positions that atoms would occupy if the
atomic region was extended into the FE domain. Kinetic energy is attributed to both nodes and atoms
in the hand-shaking zone, while away from this zone uniform temperature terms are added to account
for the missing degrees of freedom, just as for CGMD. MAAD has successfully exhibited smooth and
non-reflective transmission of elastic waves between MD and FE regions, but it does suffer from the same
limitations as CGMD. At the hand-shaking zone, kinetic motion of atoms is transferred into dynamic
motion of nodes. While this allows temperature to be represented as motion in the continuum region,
nodes, unlike atoms, have no physical meaning and are introduced only as part of the numerical discret-
ization. The solution should be independent of nodal positions, which is certainly not the case for atom-
istic simulation and atomic positions.

Most recently, Wagner and Liu [8] have developed the bridging scale decomposition approach for applica-
tion to both static and dynamic atomistic–continuum coupling. Their approach uses a continuous FE mesh
for the entire domain with smaller regions of atoms placed in regions where high fidelity modeling is needed.
Atomistic simulation, either MS or MD, is performed in the usual manner and the FE displacement solution
for the overlying mesh is determined from projection of the atomic displacements using FE shape functions.
This projection is known as the ‘‘bridging scale’’; it is the portion of the atomistic simulation solution that
must be subtracted from the total in order to separate the displacements into a coarse scale, resolvable onto
the FE mesh, and a fine scale. For the FE domain that does not contain underlying atoms, the FE solution is
solved in the usual manner. Coupling between the two regions is accomplished by the expressions for forces on
atoms and nodes and by using ‘‘ghost’’ atoms that interact with free atoms at the atomic-FE boundary and
whose displacements are determined by interpolation of the FE displacement field. For dynamic problems,
Wagner and Liu have minimized reflections at the atomic-FE boundary by using GLE�s to account for the
effect of the missing fine scale degrees of freedom in the isolated FE mesh. Park et al. have extended the
BSD method to two- [13] and three- [14] dimensional systems by numerically computing the resulting imped-
ance force that needs to be eliminated in order to represent the missing fine scale degrees of freedom. They
have used this extension to simulate elastic wave propagation and dynamic crack growth. The BSD approach
possesses many advantages; however, neither [8] nor [13,14] specify how to partition potential energy consis-
tently in the overlapping elements that are defined by both free and projected nodes and contain bonds be-
tween free and ghost atoms. This partitioning is the crucial factor in minimizing fictitious forces within the
overlap region, as will be shown.

The coupling methods listed above have been used successfully to simulate materials deformation such as
crack-grain boundary interactions, dislocation nucleation from nanoindentation and the dynamic fracture of
silicon. However, the weaknesses of these methods show that more consideration is needed in developing a
coupled atomistic–continuum approach. Specifically, methods such as FEAt, MAAD and BSD do not
provide a rigorous basis for how to partition potential energy between atomistic bonds and continuum strain
energy within the overlap regions. The MAAD methodology overlaps atomistics and continuum within an
extremely small region, and arbitrarily combines 1

2
of the energy from the atomic bonds and 1

2
of the continuum

strain energy to arrive at the full Hamiltonian for the coupled system. For the BSD approach, the overlap
region is wider and uses the mechanism of ghost atoms; however, ghosts are introduced in an ad hoc manner
and the existence of ghosts is not included in the equilibrium equations. In addition, the authors do not specify
either how to count bonds between free and ghost atoms or how the density of such bonds should contribute
to the strain energy within overlapping elements. The problem of proper partitioning of potential energy terms
has largely been overlooked, and is often simplified in many overlaying grid methodologies such as the bridg-
ing domain method by Xiao and Belytschko [15]. In that article, the authors analyze coupling for a one-dimen-
sional chain and used a simple ratio of distance from a point to the boundary of the continuum region over the
total projected length of the atomic-continuum overlap region to scale the atomistic and continuum contribu-
tions to the system energy from material within the overlap region. It was found that this simple ratio is insuf-
ficient to eliminate spurious wave reflection in two-dimensional systems, and was then modified in an ad hoc
manner.
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As already mentioned, the improper partitioning of system potential energy leads to fictitious forces acting
on atoms and nodes within the overlap region. These forces are often referred to as ‘‘ghost forces’’ and have
been a subject focused upon for continued development in atomistic–continuum coupling methods. For in-
stance, the recent review article by Curtin and Miller [16] details the origins and effects of ghost forces that
arise due to use of the QC method. They also revisit an approach by Shenoy et al. [17] to determine corrections
that can be introduced to the QC methodology to compensate for ghost forces. This approach involves the use
of dead loads equal and opposite to the ghost forces determined from the undeformed configuration of the
system. While the introduction of this correction is noteworthy, it inevitably leads to inaccuracies once the
crystal is deformed, even for homogeneous loading conditions, or if the lattice is subject to any rotation. Also
discussed in Curtin and Miller�s article is the development by Knap and Ortiz [18] of a fully non-local formu-
lation of the QC method. This approach bypasses the use of the Cauchy–Born rule and instead determines
nodal forces by constructing a small cluster of representative atoms surrounding a node and calculating the
force using the non-local, atomistic description. From the description of this method in [16], it seems that
nodes are chosen from an underlying atomic lattice and that nodal positions coincide with a subset of atomic
positions for a given configuration (nodes are, in fact, referred to as representative atoms). The nodal forces
are weighted to account for the degree of coarsening of the nodal density with respect to the atomic density of
the underlying lattice. This coarsening in regions of high nodal density is the only source of error for this method,
although the computational cost is high compared with methods that use the Cauchy–Born rule and may not be
warranted for systems with slowly varying deformation gradients.

In all, these efforts confirm that the issue of how to partition energy within an atomistic–continuum overlap
regions needs to be addressed properly in order to maintain the integrity of the two views of material defor-
mation, atomistic and continuum, and to obtain accurate solutions. Our goal for this work is to develop a
formulation that preserves the integrity of theMS and FEmethods for separate regions, but adapt each method
to partition potential energy consistently in the overlap region.

In this paper, we describe the formulation and implementation of a method to compute the potential energy
of a coupled atomistic–continuum system that has application to both quasistatic and dynamic analyses. As
with the other overlapping domainmethods described above, the approach employs a finite element formulation
covering all parts of the computational domain to solve the coarse scale displacements, while sub-
regions of interest are also covered with an atomistic crystal to resolve the fine scale displacements. The kine-
matics of the coupling between the coarse and fine scale fields, through project and interpolation operators,
are explicitly included in the statement of the system potential energy which then naturally gives rise to coupled
expressions for the forces acting at each scale. The kinematics of the coupling are described in detail in Section 2.
The resulting force equilibrium equation are developed in Section 3. In Section 4, a local rather than global pro-
jection operator is introduced for improved computational efficiency. An inevitable consequence of the overlap-
ping domain formulation is the question of how each scale contributes to the potential energy around the edges
of the atomistic regions. As mentioned above, inconsistencies in this partitioning give rise fictitious forces. Away
from edges of the atomistic regions, the potential energy is computed entirely from continuum and atomistic
contributions in the FE and atomistic regions, respectively.

The coupling approach proposed here to address the fictitious forces requires that a constitutive model
based on the Cauchy–Born rule is used to define the stress response of the continuum. These models directly
incorporate the lattice structure and interatomic potentials of the atomistic description allowing them to
reproduce exactly the response of an infinite, defect-free crystal subject to finite, homogeneous deformations.
These constitutive models are readily constructed for centrosymmetric lattices with pair potentials, and can
also be extended to more complex crystal structures than cannot be described by a simple Bravais lattice with
a single atom per unit cell. The extension of the Cauchy–Born assumption to complex lattices was outlined
some time ago by Stakgold [19]. Tadmor et al. [20] present a general formulation of Stakgold�s approach
to finite crystal elasticity with specific application to the diamond cubic lattice, while Huang et al. [21] apply
the approach to develop continuum constitutive models for graphene sheets and nanotubes. A continuum
description based on the Cauchy–Born rule is needed because spatially varying bond densities are introduced
in these models which are then solved to determine the partition of the system potential energy consistently at
the edges of the atomistic regions. Consistency is defined by directly minimizing fictitious forces. Force rather
than energy is used to define consistency because the energy density is ambiguously defined for the atomistic
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system at the edges of the crystal. Guided by the concept of a ‘‘patch test’’ [22], the consistency condition is
solved for the system under conditions of homogeneous deformation. If consistency can be achieved for this
case, it implies the solution can be systematically improved by either refining the mesh or moving the interface
between the atomistic and continuum regions farther away from the areas of inhomogeneous deformation. As
will be demonstrated, the solution of the consistency condition does not assume linearity in the response of the
atomistic system or infinitesimal strains in the continuum. Once solved, the densities are carried by the con-
tinuum, maintaining consistency for all homogeneous finite strains and rotations. Explicit expressions for the
fictitious forces arising in the coupled system and our approach for minimizing them are described in Section
5. The approach of finding consistency between the coarse and fine scale descriptions by introducing a spatially
varying bond densities in the continuum is applicable to all crystals that can be described by the Cauchy–Born
assumption. However, the development in Section 5 demonstrates how the approach is applied specifically to
centrosymmetric crystals with pair potentials. Application of the approach to other interatomic potentials and
lattice types will be the focus of future work.

The goal of employing formal projection and interpolation operators to link the coarse and fine scale fields,
combined with the direct minimization of fictitious forces, is to allow the crystal and mesh to overlap arbi-
trarily. By arbitrary, we mean no special correspondence is required between the location of the atoms or ter-
mination of crystals and the positions of the nodes or element boundaries in the finite element mesh. These
characteristics are highlighted in the examples presented in Sections 7.1–7.3. Indeed, the approach does not
require a regular mesh, or nodes arranged in lattice-like configurations. The approach does not need to be
reformulated for application to different element topologies, as we demonstrate with quadrilateral and hexa-
hedral elements, as well as triangular and tetrahedral elements which allow greater flexibility in mesh gener-
ation. Crystals can be located anywhere within the domain and at any orientation. Also, no restrictions are
made about the configuration of the interface. It is not limited to planar configurations and may be applied
to interfaces with edges and corners, as demonstrated in the examples, or general undulations without mod-
ification. Though not investigated in this work, the method would allow adaptivity of the crystal, for tracking
defects, without requiring changes to the mesh.

The approach is not limited to single crystal orientations. Polycrystals can be treated by defining different
crystal orientations across the domain. With a standard finite element formulation, there would be restrictions
on how grain boundaries could intersect the atomistic–continuum interface. Standard finite element represen-
tations of the displacement field can only reproduce the sharp strain discontinuities associated with grain
boundaries at element boundaries. Similarly, the current formulation is limited to defect-free crystals at the
atomistic–continuum interface, and defects such as dislocations cannot pass from the crystal into the contin-
uum. A primary reason for this shortcoming is that methods for representing these defects within a finite
deformation continuum setting are not well-developed, nor is it clear how one would calculate the constitutive
response of the defected material. Extending the coupling approach to handle interactions between defects and
the atomistic–continuum interface is rich area beyond the scope of this work.

2. Kinematics of quasistatic coupling

Consider a coupled atomistic–continuum system as shown in Fig. 1. It is assumed that a finite element mesh
covers all parts of the computational domain, while only limited regions of interest are also covered with an
atomic crystal. For example, such a region may be the volume of material immediately surrounding a crack
tip, or the material at the free surface of a solid that will be mechanically loaded by a nanoindenter. Let the
atomistic displacements in the system be written as
�Q ¼ ½qðaÞ; qðbÞ; . . . ; qðcÞ�T; a; b; . . . ; c 2 �A; ð1Þ

where q(a) is the displacement of atom (a) and �A is the set of all atoms. Likewise, let the nodal displacements
be written as
�U ¼ ½uðaÞ; uðbÞ; . . . ; uðcÞ�T; a; b; . . . ; c 2 �N; ð2Þ

where u(a) is the displacement of node (a) and �N is the set of all finite element nodes. In this paper, lower case
Greek symbols are used for atom indices, while lower case Roman symbols are used for node indices. In order



Fig. 1. Patch of a coupled atomistic–continuum system. The set of finite element nodes N is shown as h. The set of nodes N̂ is shown as
j. The set of atoms A is shown as s, and the set of atoms Â is shown as d.
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to satisfy boundary conditions for both regions, the motion of some of the atoms is prescribed by the contin-
uum displacement field. This subset of atomistic displacements is denoted by
Q̂ ¼ ½qðaÞ; qðbÞ; . . . ; qðcÞ�T; a; b; . . . ; c 2 Â; ð3Þ

while the complement which contains the unprescribed atomistic displacements is denoted by
Q ¼ ½qðdÞ; qð�Þ; . . . ; qðgÞ�T; d; �; . . . ; g 2 A; ð4Þ

where
Â [A ¼ �A and Â \A ¼ ;. ð5Þ

Similar to the BSD approach found in [8], atoms that belong to the set Â are referred to as ghost atoms, while
atoms that belong to the set A are referred to as free atoms. Analogously, the motion of some finite element
nodes is prescribed by the underlying lattice. These displacements are denoted by
Û ¼ ½uðaÞ; uðbÞ; . . . ; uðcÞ�T; a; b; . . . ; c 2 N̂; ð6Þ

while the unprescribed nodal displacements are denoted by
U ¼ ½uðmÞ; uðnÞ; . . . ; uðsÞ�T; m; n; . . . ; s 2 N; ð7Þ

where likewise
N̂ [N ¼ �N and N̂ \N ¼ ;. ð8Þ

One can interpolate the continuum displacement field to the location of any atom as
uðXðaÞÞ ¼
X
a2 �N

N ðaÞðXðaÞÞuðaÞ; ð9Þ
where X(a) is the undeformed position of atom (a) and N(a) is the shape function associated with node (a). The
nodal shape functions typically have compact support, so the sum in (9) involves only the nodes whose support
includes X(a). Generally, one can consider the atomistic and continuum displacement fields to be related as
Q

Q̂

� �
¼ N

U

Û

� �
þ Q0

0

� �
; ð10Þ
where
N ¼
NQU NQÛ

NQ̂U NQ̂Û

" #
. ð11Þ
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The sub-matrices of N contain shape functions as defined by the interpolation given in (9). The component of
the atomistic displacements,
Q0 ¼ ½q0ðaÞ; q0ðbÞ; . . . ; q0ðcÞ�T; a 2 A; ð12Þ

where q0ðaÞ ¼ qðaÞ � �qðaÞ for a 2 A and
�qðaÞ ¼
X
a2 �N

N ðaÞðXðaÞÞuðaÞ; a 2 A; ð13Þ
is introduced since the finite element shape functions in NQU and NQÛ are generally too coarse to represent the
atomistic displacements exactly. It will be the convention in this paper to display the portion of any quantity S
that can be represented at a coarse scale using the finite element shape functions with the overbar symbol, �S,
while any portion of S that cannot be represented by the finite element shape functions is deemed ‘‘fine scale’’
and is displayed using the accent symbol, S 0. This is similar to the convention used in [8]. Indeed, much of the
kinematic description presented thus far closely resembles the BSD methodology as given in [8]. However, in
this work the symbols Q and q strictly refer to the displacements of atoms and the symbol U only refers to the
displacements of finite element nodes. The symbol u refers to the continuum displacement field as dictated by
the finite element solution. It can be evaluated at points that coincide with atoms u(X(a)), nodes u(a), or any
point contained within the finite element mesh u(X).

SinceQ and Ûmay have arbitrary dimensions, where we expect the number of atoms represented inQ to be
larger than the number of finite elements nodes represented in Û, N�1

QÛ
will not be defined, and so the pre-

scribed nodal displacements Û are chosen to minimize the error
e ¼ Q0 �Q0 ¼
X
a2A

qðaÞ �
X
a2 �N

N ðaÞðXðaÞÞuðaÞ
" #2

. ð14Þ
The nodal displacements u(a) for a 2 N̂ are determined by solving
X
a2A

qðaÞN ðbÞðXðaÞÞ �
X
a2A

X
c2N

N ðcÞðXðaÞÞuðcÞN ðbÞðXðaÞÞ ¼
X
a2A

X
a2N̂

N ðaÞðXðaÞÞuðaÞN ðbÞðXðaÞÞ; b 2 N̂; ð15Þ
which is the discretized L2 projection of the atomistic displacements onto the finite element space containing
N(a) for a 2 N̂ using the atomistic positions X(a) for a 2 A as integration points. In this work, the fine scale
part of atomistic displacementsQ 0 is used only as an error estimation, and can be used to guide the addition or
removal of atoms from the crystal. In the work of Wagner and Liu [8], this fine scale part is used in conjunc-
tion with a bridging scale formulation to develop a method for dynamic coupling.

The solution to (15) can be expressed in matrix notation by first rewriting (14) as
e ¼ ½Q�NQUU�NQÛÛ� � ½Q�NQUU�NQÛÛ�; ð16Þ
which is minimized for
Û ¼ M�1
ÛÛ

½NT
QÛ

Q�NT
QÛ

NQUU�; ð17Þ
where
MÛÛ ¼ NT
QÛ

NQÛ. ð18Þ
The development of this projection from the fine, atomic scale to a coarser scale was first presented in [6] for
CGMD, and has also been used in a similar fashion for the BSD approach [8]. However, the presence of the
second term on the right-hand side of Eq. (17) is innovative from these previous efforts by allowing the pos-
sibility that elements containing both free and ghost atoms may be bounded by both prescribed and free
nodes. For this situation, the existence of interpolation functions connecting free atoms and nodes, NQU, is
necessary. From (10) and (17), we can express the prescribed atomistic displacements entirely in terms of
the free atomistic and nodal displacements as
Q̂ ¼ ½NQ̂U �NQ̂ÛM
�1
ÛÛ

NT
QÛ

NQU�UþNQ̂ÛM
�1
ÛÛ

NT
QÛ

Q; ð19Þ
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which shows the prescribed atomistic displacements depend not only on the displacements of the free finite
element nodes, but also on the displacements of the free atoms through the projection of those displacements
onto the overlapping part of the finite element mesh.

Note that MÛÛ has the structure (although not the dimensional units) of the finite element mass matrix,
evaluated using the atomistic coordinates as integration points. Immediately, we recognize that this matrix will
be rank deficient if an insufficient number of atoms lie in the support of every node a 2 N̂. This number of
atoms will depend on the element topology. One can propose conditions for the stability of the projection.
First, it is necessary there be at least as many atoms in A as there are nodes in N̂; however, this is not suf-
ficient to insure the stability of the projection. The number of atoms in the supports of the nodes in N̂ can be
considered on an element-by-element basis. For instance, the mass matrix for a bilinear quad requires four
integration points to avoid rank deficiency, a sufficient but not necessary condition to avoid rank deficiency
of the assembled matrix. Combined, the necessary and sufficient conditions ensure the stability of the projec-
tion. The cost of the projection can be reduced by using a diagonal, or ‘‘lumped’’, approximation to the mass
matrix. With this projection matrix, the nodal displacements will not be optimal for minimizing the error (14),
so less of the atomistic displacement information will be transferred to the nodes and more will remain as
error. Moreover, the lumped approximation does not allow linearly varying fields to be projected exactly, a
condition that will be required in the subsequent formulation.

We can simplify Eqs. (17) and (19) into the forms
Û ¼ BÛQQþ BÛUU; ð20Þ
Q̂ ¼ BQ̂QQþ BQ̂UU; ð21Þ
respectively, where
BÛQ ¼ M�1
ÛÛ

NT
QÛ

; ð22Þ
BÛU ¼ �M�1

ÛÛ
NT

QÛ
NQU ¼ �BÛQNQU; ð23Þ

BQ̂Q ¼ NQ̂ÛM
�1
ÛÛ

NT
QÛ

¼ NQ̂ÛBÛQ; ð24Þ
BQ̂U ¼ NQ̂U �NQ̂ÛM

�1
ÛÛ

NT
QÛ

NQU ¼ NQ̂U � BQ̂QNQU. ð25Þ
This simplified nomenclature will produce cleaner and more easily understood equilibrium equations in the
next section.

3. Coupled equilibrium equations

Eqs. (20) and (21) provide us the means to express the displacements of both projected nodes Û and inter-
polated atoms Q̂ as functions of the unprescribed atomic Q and nodal U displacements. To solve for these
unprescribed displacements, we must develop equilibrium equations that are derived by formulating the total
potential energy of the entire coupled atomistic–continuum systems. We express the potential energy of the
coupled system as
PðQ;UÞ ¼ PQ þPU � FQ �Q� FU �U; ð26Þ
where PQ represents the potential energy in the bonds of the crystal, PU is the strain energy density integrated
over the continuum, and FQ and FU are external forces acting on the atoms and finite element nodes, respec-
tively. To include the structure of the coupling between the atomistic and continuum displacement fields from
(20) and (21), we rewrite the contributions to the total potential as
PQ ¼ PQðQ;UÞ ¼ PQðQ; Q̂ðQ;UÞÞ; ð27Þ
PU ¼ PUðQ;UÞ ¼ PUðU; ÛðQ;UÞÞ. ð28Þ
Incorporating the coupling relationships directly in the total potential insures that the coupled system will also
remain conservative if a hyperelastic formulation is used for calculating the continuum response. The equa-
tions of static equilibrium are derived from total potential as
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RQ ¼ oP
oQ

¼ oPQ

oQ
þ oPQ

oQ̂

oQ̂

oQ
þ oPU

oÛ

oÛ

oQ
� FQ ¼ 0; ð29Þ

RU ¼ oP
oU

¼ oPU

oU
þ oPU

oÛ

oÛ

oU
þ oPQ

oQ̂

oQ̂

oU
� FU ¼ 0. ð30Þ
Using (20) and (21), the equilibrium equations can be expressed as
RQ ¼ oPQ

oQ
þ BT

Q̂Q

oPQ

oQ̂
þ BT

ÛQ

oPU

oÛ
� FQ ¼ 0; ð31Þ

RU ¼ oPU

oU
þ BT

ÛU

oPU

oÛ
þ BT

Q̂U

oPQ

oQ̂
� FU ¼ 0. ð32Þ
Linearizing the equilibrium equations about the Q and U yields
RQðQ;UÞ þ oRQ

oQ
dQþ oRQ

oU
dU ¼ 0; ð33Þ

RUðQ;UÞ þ oRU

oQ
dQþ oRU

oU
dU ¼ 0; ð34Þ
which may be written in matrix form as
KQQ KQU

KUQ KUU

� �
dQ

dU

� �
¼ �

RQ

RU

� �
; ð35Þ
where the components of the symmetric tangent matrix are
KQQ ¼ o2PQ

oQ oQ
þ BT

Q̂Q

o2PQ

oQ̂ oQ
þ o2PQ

oQ oQ̂
BQ̂Q þ BT

Q̂Q

o2PQ

oQ̂ oQ̂
BQ̂Q þ BT

ÛQ

o2PU

oÛ oÛ
BÛQ; ð36Þ

KQU ¼ KT
UQ ¼ o2PQ

oQ oQ̂
BQ̂U þ BT

Q̂Q

o2PQ

oQ̂ oQ̂
BQ̂U þ BT

ÛQ

o2PU

oÛ oU
þ BT

ÛQ

o2PU

oÛ oÛ
BÛU; ð37Þ

KUU ¼ o
2PU

oU oU
þ BT

ÛU

o
2PU

oÛ oU
þ o

2PU

oU oÛ
BÛU þ BT

ÛU

o
2PU

oÛ oÛ
BÛU þ BT

Q̂U

o
2PQ

oQ̂ oQ̂
BQ̂U. ð38Þ
One could use this tangent matrix within a Newton solution scheme to derive the general procedure for solving
the coupled system of equations. Alternatively, we used a preconditioned conjugate gradient algorithm [23] to
solve Eqs. (31) and (32) for the analyses presented in this paper.

4. Projection using moving least squares

One of the principal drawbacks with the L2 projection is calculation of M�1
ÛÛ

, which is required to evaluate
the B matrices for use in either directly solving Eqs. (31) and (32) or in determining the components of the
tangent matrix. An approximation to M�1

ÛÛ
can be used for the tangent stiffness, but approximations to the

linear solution (31) required for evaluation of the residual will directly affect the accuracy of the solution. Eval-
uation of M�1

ÛÛ
becomes especially problematic with the application of the coupling scheme to dynamic prob-

lems when the residual will need to be evaluated a very large number of times.
The discretized L2 projection (15) is not the only option for transferring the atomistic displacements to the

finite element nodes. Rather than employing a global least squares approach, we can make use of a local, or so-
called moving least squares (MLS), method to project atomistic information to the finite element nodes. The
basis functions developed for the reproducing kernel particle method (RKPM) [24] possess a number of prop-
erties that make them well-suited for use in a coupling scheme. Among these properties are that the functions
can be constructed to reproduce any desired function exactly. In particular, we will show that the basis func-
tions must be able to reproduce a linear displacement field exactly in order for the coupled method to solve
homogeneous deformations exactly. A number of additional useful properties of the basis functions is derived
from the connection between RKPM and wavelets. This connection lends the interpretation of interpolating
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displacements from the atoms to the finite element nodes as a low pass filtering operation with a well-charac-
terized spectral behavior. Moreover, the wavelet formalism furnishes a method wherein a series of these filters
can be constructed to produce a hierarchical decomposition of the atomistic field into components possessing
different scales of information.

RKPM belongs to a class of methods for which the approximation, or ‘‘image’’, of a signal is given by a
kernel expression. In the transfer of displacements from the atoms to the nodes, the atomic information serves
as the signal while the nodal information is the image. Without loss of generality, we can consider the expres-
sion for the approximation in one dimension
uReðxÞ ¼
Z þ1

�1
/eðx� yÞuðyÞ dy; ð39Þ
where /e is alternately called a weight, kernel, or smoothing function. From the analogy to signal processing,
/e may be viewed as a customizable low pass filter between the original signal, or data, u(y) and its reproduced
image. This function is positive, even, and has compact support characterized by the dilation parameter e. Liu
and Chen [25] improved the accuracy of the method by modifying the window function with a correction to
yield a reproducing condition as
uReðxÞ ¼
Z þ1

�1

�/eðx� yÞuðyÞ dy; ð40Þ
where the modified window function
�/eðx� yÞ ¼ Cðx; x� yÞ/eðx� yÞ ð41Þ

incorporates the polynomial
Cðx; x� yÞ ¼ b0ðxÞ þ b1ðxÞðx� yÞ þ b2ðxÞðx� yÞ2 þ � � � þ bmðxÞðx� yÞm ð42Þ

which ensures that the approximation can exactly represent polynomials of order m. In general, we may ex-
press the correction function as
Cðx; x� yÞ ¼ bðxÞ � Pðx� yÞ; ð43Þ

where P is a basis of polynomials that possess the desired degree of completeness and b(x) is an vector of un-
known coefficients determined from the reproducing condition (40). The requirement that each member of the
basis be reproduced follows from (40) as
Pð0Þ ¼
Z þ1

�1
bðxÞ � Pðx� yÞ/eðx� yÞPðx� yÞ dy. ð44Þ
The vector of coefficients follows as
bðxÞ ¼ M�1
e ðxÞPð0Þ; ð45Þ
where
MeðxÞ ¼
Z þ1

�1
Pðx� yÞ � Pðx� yÞ/eðx� yÞ dy ð46Þ
is known as the moment matrix. M in the local, moving least squares method is the analog of MÛÛ for the
global projection. However, while the dimension of MÛÛ is the number of projected nodes in N̂, the dimen-
sion of M is determined by the number of terms in the correction function (43) and is independent of the num-
ber of projected nodes. One typically enforces the reproducing condition only through linear functions, needed
to represent constant strain fields, meaning M is 4 · 4 in three-dimensions. Using the result from (45), the
reproducing condition (40) can be written as
uReðxÞ ¼
Z þ1

�1
bðxÞ � Pðx� yÞ/eðx� yÞuðyÞ dy. ð47Þ
In evaluating the representations for the nodal field from the atomistic information, we discretize the integrals
in the previous expressions. The discrete reproducing condition follows from (47) as
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uðXÞ ¼
XNp

b¼1

bðXÞ � PðX� XðbÞÞ/eðX� XðbÞÞqðbÞDV ðbÞ; ð48Þ
where Np is the number of sampling atoms under consideration, and X(b) and DV(b) are the coordinates and
integration weight (volume) associated with atom b, respectively. From (48), we can identify the RKPM nodal
shape functions as
uðaÞ ¼
XNp

b¼1

~N
ðbÞðXðaÞÞqðbÞ; ð49Þ
where
~N
ðbÞðXÞ ¼ bðXÞ � PðX� XðbÞÞ/eðX� XðbÞÞDV ðbÞ; ð50Þ
a 2 N̂ and b 2 A.
These relations enable us to replace the term M�1

ÛÛ
NT

QÛ
found in Eqs. (22)–(25) with the matrix of RKPM

shape functions ~NÛQ defined in Eq. (50). The prescribed continuum and atomic displacements are now ex-
pressed as
Û ¼ ~BÛQQþ ~BÛUU; ð51Þ
Q̂ ¼ ~BQ̂QQþ ~BQ̂UU; ð52Þ
where
~BÛQ ¼ ~NÛQ; ð53Þ
~BÛU ¼ �~NÛQNQU; ð54Þ
~BQ̂Q ¼ NQ̂Û

~NÛQ; ð55Þ
~BQ̂U ¼ NQ̂U �NQ̂Û

~NÛQNQU. ð56Þ

We note that depending on the properties of the shape functions used to construct ~NÛQ, the coefficients of the
kinematic coupling relations (53)–(56) can be reduced. ~NÛQ projects the values of a function evaluated at
atoms in A to the nodes in N̂. Similarly, (54) first evaluates a function in the space of the shape functions
from nodes in N at atoms in A through NQU and then projects those values to the nodes in N̂. If the mesh-
less shape functions are constructed to reproduce functions in the space of the nodal shape functions associ-
ated with N exactly, then ~BÛU ¼ 0 if the nodal shape functions display the Kronecker delta property
N ðaÞðXðbÞÞ ¼ dab ð57Þ

for all nodes a; b 2 �N. As a result, (56) would reduce to ~BQ̂U ¼ NQ̂U. This simplification is not possible with
the L2 projection because the operator M�1

ÛÛ
NT

QÛ
can only reproduce functions in the space of the nodal shape

functions associated with N̂ exactly.
Using (51) and (52), the equilibrium equations can be expressed as
RQ ¼ oPQ

oQ
þ ~B

T

Q̂Q

oPQ

oQ̂
þ ~B

T

ÛQ

oPU

oÛ
� FQ ¼ 0; ð58Þ

RU ¼ oPU

oU
þ ~B

T

ÛU

oPU

oÛ
þ ~B

T

Q̂U

oPQ

oQ̂
� FU ¼ 0; ð59Þ
which yield the components of the tangent matrix
KQQ ¼ o
2PQ

oQ oQ
þ ~B

T

Q̂Q

o
2PQ

oQ̂ oQ
þ o

2PQ

oQ oQ̂
~BQ̂Q þ ~B

T

Q̂Q

o
2PQ

oQ̂ oQ̂
~BQ̂Q þ ~B

T

ÛQ

o
2PU

oÛ oÛ
~BÛQ; ð60Þ

KQU ¼ KT
UQ ¼ o2PQ

oQ oQ̂
~BQ̂U þ ~B

T

Q̂Q

o2PQ

oQ̂ oQ̂
~BQ̂U þ ~B

T

ÛQ

o2PU

oÛ oU
þ ~B

T

ÛQ

o2PU

oÛ oÛ
~BÛU; ð61Þ

KUU ¼ o2PU

oU oU
þ ~B

T

ÛU

o2PU

^
þ o2PU

^
~BÛU þ ~B

T

ÛU

o2PU

^ ^
~BÛU þ ~B

T

Q̂U

o2PQ

^ ^
~BQ̂U. ð62Þ
oU oU oU oU oU oU oQ oQ
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5. Correction to the Cauchy–Born rule in the overlap region

The previous sections describe how atomistic and continuum degrees of freedom are coupled; however, the
specific form of the total potential has not yet been given. Naturally, the atomistic contribution to the poten-
tial energy is computed from a sum of bond energies in the crystal. The continuum strain energy is computed
using the Cauchy–Born rule [10,11], which accurately describes the long wavelength behavior of the lattice. A
critical detail to address is how one corrects for the overlap of the continuum and the underlying crystal. The
proposed coupling method covers the entire domain with finite elements, but prescribes the motion of select
portions of the mesh using an underlying atomistic crystal. Around the edges of the embedded crystals, there
will be some region over which there is overlap between the bonds between free and ghost atoms and finite
elements containing nodes with both free and prescribed displacements. In this overlap region, the weighting
of the contributions to potential energy from the bonds and finite elements needs to be determined in such a
way that the total energy for the coupled system is consistent with the result one would obtain from a pure
atomistic system, regardless of the location and orientation of the embedded crystals with respect to the over-
laying finite element mesh.

We can determine immediately that the weighting of the bonds between free and ghost atoms must always
be 1 to preserve the energy per atom among free atoms, while the weighting of contributions from elements
containing both active nodes and ghost atoms must be compensated to maintain the correct strain energy den-
sity. An initial attempt to quantify this weighting factor can be made by considering elements with uniform
strain energy density, and by expressing the total strain energy in the continuum as
PU ¼
XNe

e

weUeV e; ð63Þ
where Ue and Ve are the strain energy density and volume, respectively, of element e and all elements e 2 Ne

contribute energy according to a weighting factor we. For elements with no underlying atomic lattice, we = 1,
while for elements that are bounded only by nodes with displacements projected from the underlying atomic
lattice, we = 0. For overlap elements that contain ghost atoms and are bounded by both free and prescribed
nodes, 0 6 we 6 1. Note that the problem of finding these weights is underdetermined if one only considers the
total energy of the system. That is, any number of combinations of weights can be found that reproduce the
same total energy for the coupled system under homogeneous deformations. However, only one combination
maintains the homogeneously deformed state as the lowest energy configuration. For simple one-dimensional
examples, one can deduce the weights we. For the case of pair interactions, the weighing for these elements,
assuming homogeneous stretching over the entire system, is
we ¼ 1�
P

abr̂
ðabÞ
e uðabÞ

V eUe
; ð64Þ
where r̂ðabÞe is the fraction of the bond between atoms a and b that lies within the element and u(ab) is bond
energy. Given that Ue is calculated for the continuum using the same bond potentials and orientations as
for the crystal subject to the Cauchy–Born rule, it may be possible to express the weight we in a way that
is independent of the state of deformation. That is, we must be expressed strictly in terms of the geometric
parameters r̂ðabÞe and Ve, independent of Ue and u(ab); otherwise, the weighting factor would appear to be a
function of the deformation even for the case of homogeneous deformation. If one uses elements with dimen-
sions that are multiples of the crystal�s unit cell, elements completely covering the underlying crystal have
we = 0 since the strain energy density following the Cauchy–Born rule dictates
Ue ¼
1

V e

X
ab

uðabÞ. ð65Þ
For the extension to multiple dimensions and nonuniform strain energy density within elements, a general
approach for introducing weighting into the total potential must be developed as well as a method for determin-
ing the optimal weighting, where optimality is associated with maintaining the homogeneously deformed state
as the lowest energy configuration. The approach for introducing weighting into the total potential follows
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directly from the Cauchy–Born rule. A generalized form of the Cauchy–Born rule for particles interacting with
pair potentials was introduced by Gao and Klein in their virtual internal bond model (VIB) [26,27]. The VIB
form of the strain energy density function is
U ¼ 1

V 0

Z
V �
0

UðrÞD dV ; ð66Þ
where V0 is the undeformed representative volume, r is the deformed virtual bond length, U(r) is the bonding
potential, D is the volumetric bond density function, and V �

0 is the integration volume defined by the range of
influence of U. Depending on the range of influence of the bond potential function, the integration volume V �

0

may not correspond with the representative volume V0. This difference may be illustrated for crystalline mate-
rials whenever the bond potentials extend beyond the lattice unit cell. The precise definition of D(R,h,/) is
that D(R,h,/)R2sinh dR dh d/ represents the number of bonds in the undeformed solid with length between
R and R + dR and orientation between {h,/} and {h + dh,/ + d/}. The case
DðR; h;/Þ ¼ dDðR� R0ÞDh/ðh;/Þ ð67Þ

corresponds to a network of identical bonds of undeformed length R0. The Dirac delta function is denoted
here with dD. A crystal lattice with a single-atom basis, e.g., a face-centered cubic lattice, for which interactions
are limited to only nearest neighbors can be represented as
DðR; h;/Þ ¼ D0dDðR� R0Þ
XM
m¼1

XN
n¼1

1

sin h
dDðh� hmÞdDð/� /nÞ; ð68Þ
where D0 is a scaling constant and hm and /n are the orientation angles for the neighboring atoms. Each bond
in D(R,h,/) is representative of all bonds in the crystal with the same orientation and length.

For the coupled system, the bond density function needs to be modified as
DðR; h;/;XÞ ¼ D0dDðR� R0Þ
XM
m¼1

XN
n¼1

1

sin h
dDðh� hmÞdDð/� /nÞqmnðXÞ; ð69Þ
where the spatially varying 0 6 qmn(X) 6 1 is introduced because the energy contained by bonds between
atoms that are explicitly represented, such as between free atoms and other free atoms or free atoms and ghost
atoms, is already contributing to PQ. Hence, that energy does not need to be accounted for in PU. In regions
of the domain superposed by a complete underlying crystal, qmn(X) = 0 since all bonds are represented at the
density of the crystal. Conversely, qmn(X) = 1 over the parts of the domain without any underlying crystal
since the Cauchy–Born strain energy density must account for all of the potential energy. In general, the strain
energy for a crystal subject to pair interactions can be expressed as the sum
UðC;XÞ ¼ 1

V 0

Xnb
i

qðiÞðXÞuðrðiÞÞ; ð70Þ
where u is the interaction potential,
rðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðiÞ � CRðiÞ

q
; C ¼ FTF; ð71Þ
R(i) is the vector representing bond (i) in the undeformed configuration and F is the deformation gradient. In
this paper, (i) refers to not just a single bond, but rather all bonds of the same type, meaning bonds having the
same orientation and length in the reference configuration. Hence, nb is the total number of bond types.

In considering how this generalization of the Cauchy–Born rule is to be applied to our formulation, we
recast the equilibrium equation (31) into
RQ ¼ oPQ

oQ
þ BT

ÛQ
RÛ ¼ 0 ð72Þ
for the L2 projection or equilibrium equation (58) into
RQ ¼ oPQ

oQ
þ ~N

T

ÛQRÛ ¼ 0 ð73Þ
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for the MLS projection method where
RÛ ¼ oPU

oÛ
þNT

Q̂Û

oPQ

oQ̂
; ð74Þ
and we have omitted the external force term since, in general, such forces will not be acting on atoms in the
overlap region. The quantity RÛ represents the residual forces acting on prescribed nodes. Contributions to
these forces come from both other nodes through derivatives of continuum strain energy and ghost atoms
through derivatives of atomic potential energy. Similarly, Eqs. (32) and (59) can be recast as
RU ¼ oPU

oU
þNT

Q̂U

oPQ

oQ̂
þ BT

ÛU
RÛ ¼ 0 ð75Þ
and
RU ¼ oPU

oU
þNT

Q̂U

oPQ

oQ̂
þ ~B

T

ÛURÛ ¼ 0; ð76Þ
respectively. We notice that the first two terms on the right-hand side of either (75) or (76) are very similar to
the terms that define RÛ and that an additional contribution exists for situations in which both free and pre-
scribed nodes interact with free atoms through the quantities BÛU and ~BÛU, respectively. While further analysis
shown will use the equations corresponding to the MLS projection method, these relations prove that an
equivalent analysis could be developed for the L2 method.

We now decompose the contribution to the total energy from the continuum (28) as
PU ¼
Xnb
i

½PU�ðiÞ; ð77Þ
where
½PU�ðiÞ ¼ ½P0
U�ðiÞ þ ½ ~PU�ðiÞ þ ½ �PU�ðiÞ. ð78Þ
½P0
U�ðiÞ represents the contribution over the domain where q(i) = 0, which in the undeformed configuration will

be denoted X0
0ðiÞ, ½ ~PU�ðiÞ represents the contribution over the domain where 0 < q(i) < 1, which in the unde-

formed configuration will be denoted ~X0ðiÞ, and ½ �PU�ðiÞ represents the contribution over the domain where
q(i) = 1, which in the undeformed configuration will be denoted �X0ðiÞ. Clearly, ½P0

U�ðiÞ ¼ 0. However, for com-
pleteness the decomposed domain in the undeformed configuration is defined as
X0 ¼ X0
0ðiÞ [ ~X0ðiÞ [ �X0ðiÞ; ð79Þ
where
X0
0ðiÞ \ ~X0ðiÞ ¼ ;; ~X0ðiÞ \ �X0ðiÞ ¼ ;; �X0ðiÞ \ X0

0ðiÞ ¼ ;. ð80Þ
Notice in (79) that while each of the decomposed domain sub-regions depends on the bond (i) being consid-
ered, the total domain X0 refers to the entire volume of the system and no bond designation is necessary. The
contribution to the strain energy from the bonds of type (i) represented in the continuum is given by
½ ~PU�ðiÞ ¼
1

V 0

Z
~X0ðiÞ

qðiÞðXÞuðrðiÞÞ dX; ð81Þ

½ �PU�ðiÞ ¼
1

V 0

Z
�X0ðiÞ

uðrðiÞÞ dX. ð82Þ
In (81), the spatially varying bond density is introduced to account for the overlap between the continuum
domain and the underlying crystal. We must still define how these bond densities are determined. For bonds
r(ab) with atoms a and b both within given volume, such as a finite element, the contribution of r(ab) to the bond
density of the volume is clear; however, if either a or b lies outside the volume, the fraction of the bond to
attribute to this volume is not clear. Considering fractions of the bond length is an arbitrary construction that
is only defined unambiguously in one-dimensional systems. However, in multiple dimensions bond fractions
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may lie outside the elements containing either a or b, as illustrated in Fig. 2, even when the atomic spacing is
much smaller than the element dimensions. In Fig. 2, the bond between atoms a and b is shown to overlap an
element containing by node B. However, it is unclear whether this bond should exert forces on node B since
neither atom a nor atom b lies within any elements within the support of nodes B. For multi-body interactions,
the division of the bond energy in space is even more difficult to define unambiguously.

To avoid the ambiguity associated with partitioning a bond, we determine the bond densities in (81) based
on a consistency condition. The coupled system should produce homogeneous deformations given the appro-
priate boundary conditions. This concept is analogous to the ‘‘patch test’’ for assessing the convergence of the
FE method [22]. One could consider the unstressed system, but in general we would like to satisfy this con-
sistency condition for any homogeneous state of deformation which the atomistic or continuum system would
produce individually. For the atoms a 2 A which are not located near surfaces or other crystal defects, this
condition is satisfied automatically. These atoms only interact with other atoms in A or with the ghost atoms
in Â which have been introduced to provide a complete surrounding. Hence, in evaluating Eq. (73), the term
oPQ

oQ
is set to zero and we are left with the relation RÛ ¼ 0. This makes sense; the free atoms are equilibrated

through their interaction with other free atoms and ghost atoms, while the continuum densities q(i)(X) need to
be determined such that the prescribed nodes are also in equilibrium.

For nodes whose support lies entirely in �X0ðiÞ, the homogeneous solution will be reproduced as long as the
element formulation satisfies the patch test. However, for nodes a 2 �N whose support intersects ~X0ðiÞ, this
consistency condition is not guaranteed. Let XðaÞ

0 denote the support of node a in the undeformed configura-
tion, as illustrated in Fig. 3. We define ~NðiÞ as the subset of �N containing all nodes satisfying
XðaÞ
0 \ ~X0ðiÞ � ~X

ðaÞ
0ðiÞ 6¼ ;. ð83Þ
We begin the derivation of this consistency condition by considering a general state of homogeneous defor-
mation, which may be expressed as
uðX; tÞ ¼ cðtÞ þQðtÞF�X; ð84Þ
Fig. 2. Bond between atoms near element boundaries.

Fig. 3. The support of node a 2 ~NðiÞ.
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where c(t) is a rigid body translation, Q(t) is a rigid body rotation, and F* is the homogeneous deformation
gradient over the entire domain. Since all contributions to the total potential are frame invariant, we can con-
sider the following state of homogeneous deformation
x ¼ F�X and u ¼ ðF� � 1ÞX ð85Þ
without loss of generality. In determining the total internal force on a node in ~NðiÞ, we find three types of
contributions. There are continuum contributions from ½ ~PU�ðiÞ and ½ �PU�ðiÞ, and a third contribution from

bonds between free atoms in either X0
0ðiÞ or

~X
ðaÞ
0ðiÞ and ghost atoms in ~X

ðaÞ
0ðiÞ, represented by the terms NT

Q̂Û

oPQ

oQ̂

in (74) or NT
Q̂U

oPQ

oQ̂
in (76).

First, we consider the atomistic contribution. The potential energy in the bonds is given by
PQ ¼
X
a

X
b6¼a

uðrðabÞÞ. ð86Þ
The atomistic contribution to the force on a node in ~NðiÞ is given by
f
ðaÞ
Q ¼ � oPQ

ouðaÞ
; a 2 ~NðiÞ. ð87Þ
For this analysis, we examine the total force on node (a) which includes contributions from all bond types
i = 1,2, . . .,nb as long as there is at least a single bond type for which a 2 ~NðiÞ. We shall show later that
for those bonds for which a 62 ~NðiÞ, the expression for total force evaluates to zero. The only bonds contrib-
uting to f

ðaÞ
Q are those between free atom (a), which resides in either X0

0ðiÞ or
~X
ðaÞ
0ðiÞ, and ghost atom (b), which

resides in ~X
ðaÞ
0ðiÞ. The bond vector may be expressed as
rðabÞ ¼ xðbÞ � xðaÞ ¼ ½XðbÞ þ uðXðbÞÞ� � ½XðaÞ þ qðaÞ� ¼ XðbÞ þ
X
a2 ~NðiÞ

N ðaÞðXðbÞÞuðaÞ � XðaÞ � qðaÞ

¼
X
a2 ~NðiÞ

N ðaÞðXðbÞÞuðaÞ � qðaÞ þ RðabÞ; ð88Þ
and
orðabÞ

ouðaÞ
¼ N ðaÞðXðbÞÞ1; ð89Þ
where N(a)(X) is an element of either NQ̂U or NQ̂Û depending on whether a 2 N or a 2 N̂, respectively. Using
this result, fðaÞQ (87) may be expanded as
f
ðaÞ
Q ¼ �F�

X
a2A

X
b:XðbÞ2~X

ðaÞ
0

u0ðrðabÞÞ
rðabÞ

RðabÞN ðaÞðXðbÞÞ. ð90Þ
The continuum contribution over �X0ðiÞ follows from
�f
ðaÞ
U ¼ �

Xnb
i

o �PUðiÞ

ouðaÞ
¼ �

Xnb
i

o

ouðaÞ

Z
�XðaÞ
0ðiÞ

U dX ¼ �
Xnb
i

Z
�XðaÞ
0ðiÞ

P :
oF

ouðaÞ
dX; ð91Þ
where �X
ðaÞ
0ðiÞ � �X0ðiÞ \ XðaÞ

0 and P ¼ oU
oF

is the non-symmetric, first Piola–Kirchhoff stress. From U given by (70),
the Piola–Kirchhoff stress is
P ¼ F
1

V 0

Xnb
i

u0ðrðiÞÞ
rðiÞ

RðiÞ � RðiÞ; ð92Þ
using the relations
rðiÞ ¼ F�RðiÞ and
orðiÞ
oF

¼ 1

rðiÞ
rðiÞ � RðiÞ. ð93Þ
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Using
oF iJ

ouðaÞk

¼ oN ðaÞ

oX J
dik; ð94Þ
we can expand �f
ðaÞ
U as
�f
ðaÞ
U ¼ �F� 1

V 0

Xnb
i

Z
�XðaÞ
0ðiÞ

u0ðrÞ
r

R� R

� �
ðiÞ

oN ðaÞ

oX
dX. ð95Þ
The contribution from ½ ~PU�ðiÞ differs from (95) only by the introduction of the bond density function q(i)(X) for
i = 1, . . .,nb and the integration domain, and is given by
~f
ðaÞ
U ¼ �

Xnb
i

o ~PUðiÞ

ouðaÞ
¼ �F� 1

V 0

Xnb
i

Z
~X
ðaÞ
0ðiÞ

u0ðrÞq
r

R� R

� �
ðiÞ

oN ðaÞ

oX
dX. ð96Þ
Many terms in the integrands of (95) and (96) do not vary spatially if the body is in a state of homogeneous
deformation. Therefore, we can rewrite these expressions as
�f
ðaÞ
U ¼ �F� 1

V 0

Xnb
i

u0ðrÞ
r

R� R

� �
ðiÞ

Z
�XðaÞ
0ðiÞ

oN ðaÞ

oX
dX ð97Þ
and
~f
ðaÞ
U ¼ �F� 1

V 0

Xnb
i

u0ðrÞ
r

R� R

� �
ðiÞ

Z
~X
ðaÞ
0ðiÞ

qðiÞ
oN ðaÞ

oX
dX. ð98Þ
Since the Cauchy–Born expressions for the continuum response are selected to represent the crystal structure
of the underlying atomistic system, the bonds in (90) may be collected into the same groups by orientation and
length as those given by the bond types i = 1, . . .,nb in (97) and (98). Using this observation, f

ðaÞ
Q from (90) may

be expressed as
f
ðaÞ
Q ¼ �F�

Xnb
i

u0ðrÞ
r

R
X

b:XðbÞ2~X
ðaÞ
0 ;

RðabÞ¼R

N ðaÞðXðbÞÞ

2
6664

3
7775

ðiÞ

. ð99Þ
Collecting these expressions for the force on a node in ~NðiÞ, we find
fðaÞ ¼ f
ðaÞ
Q þ �f

ðaÞ
U þ ~f

ðaÞ
U ¼ �F�

Xnb
i

u0ðrÞ
r

� �
ðiÞ
f̂
ðaÞ
ðiÞ ; ð100Þ
where
f̂
ðaÞ
ðiÞ ¼ RðiÞ

X
b:XðbÞ2~X

ðaÞ
0ðiÞ;

RðabÞ¼RðiÞ

N ðaÞðXðbÞÞ þ 1

V 0

½R� R�ðiÞ
Z
�XðaÞ
0ðiÞ

oN ðaÞ

oX
dXþ

Z
~X
ðaÞ
0ðiÞ

qðiÞ
oN ðaÞ

oX
dX

" #
. ð101Þ
Note that f̂
ðaÞ
ðiÞ in (101) has units of length, and thus can be directly interpreted as bond overlap. Also, it is inde-

pendent of the homogeneous state of deformation, depending only on the geometry of the undeformed
configuration.

Earlier, we mentioned that (101) is evaluated for any node (a) such that a 2 ~NðiÞ for at least one bond type
(i). For any bond type (i) for which a 62 ~NðiÞ, it can be shown that (101) evaluates to zero. For such atoms,
~X
ðaÞ
0ðiÞ ¼ ; and �X

ðaÞ
0ðiÞ ¼ XðaÞ

0 . Thus, (101) simplifies to
f̂
ðaÞ
ðiÞ ¼ 1

V 0

½R� R�ðiÞ
Z
XðaÞ
0

oN ðaÞ

oX
dX. ð102Þ
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The integral of the gradient of a nodal shape function over its support is
Z
XðaÞ
0

oN ðaÞ

oX
dX ¼

I
oXðaÞ

0

N ðaÞN dC ¼ 0; ð103Þ
where N is the outward normal over oXðaÞ
0 , the boundary of the support of node (a). We can combine (102) and

(103) to produce f̂
ðaÞ
ðiÞ ¼ 0.

The expressions for nodal force presented in Eqs. (100) and (101) result in the equilibration of prescribed
nodes by satisfying the relation RÛ ¼ 0. If the bond density functions are determined such that this equality is
exact, then the same expressions can be used to satisfy equilibration of free nodes through the relation RU = 0
as it appears in Eq. (76). However, if equilibration of prescribed nodes is only approximately satisfied, Eq. (76)
contains an additional term that must be evaluated for free nodes. For this situation,
fðaÞ ¼ �F�
Xnb
i

u0ðrÞ
r

� �
ðiÞ
f
ðaÞ
ðiÞ ; a 2 N; ð104Þ
where
f
ðaÞ
ðiÞ ¼ f̂

ðaÞ
ðiÞ þ

X
b2 ~Ni\N̂

f̂
ðbÞ
ðiÞ
~B
ðaÞðXðbÞÞ; ð105Þ
and where the term ~B
ðaÞðXðbÞÞ refers to the element of ~BÛU corresponding with nodes a 2 N and b 2 N̂.

If we define the quantity ~R to be
~R ¼ ½fðaÞ�T; a 2 ~NðiÞ; ð106Þ
then in the absence of external loads being imposed directly on the nodes in ~NðiÞ, we would expect k~Rk ¼ 0 for
all states of deformation. For the case of homogeneous deformation, this amounts to enforcing the conditions

of f̂
ðaÞ
ðiÞ ¼ 0 or fðaÞðiÞ ¼ 0, where a is either a prescribed node or a free node, respectively, for all i = 1, . . .,nb and

a 2 ~NðiÞ. This implies (101) and (105) provide a means for defining the discretized values of q(i) optimally. In
most situations, the discretization of the bond density q(i) may be insufficient to capture the local fluctuation in
the bond density required to produce both f̂

ðaÞ
ðiÞ ¼ 0 and f

ðaÞ
ðiÞ ¼ 0 exactly (thereby necessitating the distinction

between f̂
ðaÞ
ðiÞ and f

ðaÞ
ðiÞ as discussed earlier). Therefore, we approximate these conditions by introducing
P ðiÞ ¼
1

2

X
a2 ~Ni\N

f
ðaÞ
ðiÞ � f

ðaÞ
ðiÞ þ

X
a2 ~Ni\N̂

f̂
ðaÞ
ðiÞ � f̂

ðaÞ
ðiÞ

0
@

1
A ð107Þ
and then select q(i) that satisfies
min
qðiÞ

½P ðiÞ�; ð108Þ
where q(i) represents the vector of values for all FE integration points at which we are evaluating q(i)(X). The

expression for f̂
ðaÞ
ðiÞ given in (101) suggests an alternative form for the quantity P(i) requiring a simpler calcu-

lation of RðiÞ � f̂
ðaÞ
ðiÞ in place of f̂

ðaÞ
ðiÞ � f̂

ðaÞ
ðiÞ since f̂

ðaÞ
ðiÞ is collinear with R(i). The same argument can be made for

the term in P(i) involving f
ðaÞ
ðiÞ producing
P ðiÞ ¼
1

2

X
a2 ~Ni\N

RðiÞ � fðaÞðiÞ

h i2
þ

X
a2 ~Ni\N̂

RðiÞ � f̂
ðaÞ
ðiÞ

h i20
@

1
A. ð109Þ
The number of independent equations we can extract from P(i) is determined by the number of spatial dimen-
sions and the number of nodes in ~NðiÞ. We cannot uniquely determine q(i) if it possesses more unknowns. If we
introduce unknowns at the integration points used for the finite element calculations, the number of unknowns
is determined by the number of elements covering ~X0ðiÞ and the number of integration points per element.
Clearly, the number of unknowns may generally exceed the number of independent equations. Therefore, it
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may be necessary to introduce an additional term into either (107) or (109) to ensure the solution of q(i). One
possible addition is a term that tends to smooth the bond density distribution, resulting in the modified
function
P �
ðiÞ ¼ P ðiÞ þ

1

2
j
Z
~X0ðiÞ

rXqðiÞ � rXqðiÞ dX; ð110Þ
and q(i) satisfies
min
qðiÞ

½P �
ðiÞ�; ð111Þ
where j is a parameter used to adjust the influence of the gradient regularization. This method is known as
Tikhonov regularization and is commonly found in the literature [28]. The stability of determining q(i) for gen-
eral cases of overlap between the crystal and mesh needs to be investigated further.

In summary, the continuum strain energy for overlap elements is calculated using a modification of the
Cauchy–Born rule that includes bond density correction functions, q(i)(X). These functions are determined
by solving the minimization problems given in Eqs. (109)–(111) using the expressions for f̂

ðaÞ
ðiÞ given in Eq.

(101) and f
ðaÞ
ðiÞ given in Eq. (105). For our analyses, we use a Newton solution scheme to solve for the vector

of values q(i) subject to the constraint 0 6 q(i) 6 1.
6. Implications of the overlap correction

Examination of (101) allows us to determine the fictitious forces acting on nodes in ~NðiÞ if no correction is
made to the Cauchy–Born rule. In this case, the uncorrected bond density function is q(i)(X) = 1 for all i =
1, . . .,nb, representing full density for all bond families nb. Using (103) with the uncorrected bond density func-
tion, we find
f̂
ðaÞ
ðiÞ ¼ RðiÞ

X
b:XðbÞ2~X

ðaÞ
0ðiÞ;

RðabÞ¼RðiÞ

N ðaÞðXðbÞÞ. ð112Þ
Using Eqs. (100), (104), (105) and (112), we can determine the total fictitious force acting on nodes that bound
the overlap region as a result of uncorrected overlap between the continuum and the underlying crystal.

Interpreting the expression for f̂
ðaÞ
ðiÞ in (101) is difficult in general given that integration of the shape function

gradient occurs over two distinct domains, �X
ðaÞ
0ðiÞ and

~X
ðaÞ
0ðiÞ. However, detailed examination enables us to con-

clude that the total force on node (a) from bond type (i) comes from a combination of forces exerted on ghost
atoms within the overlap element from free atoms and the force on the node exerted by the continuum to com-
pensate for the bonds that are not present. At equilibrium, f̂

ðaÞ
ðiÞ ¼ 0 for prescribed nodes, or fðaÞðiÞ ¼ 0 for free

nodes. It is interesting to note that this result can also be obtained by omitting the cross terms between nodes
and ghost atoms in the equilibrium equations and by using the uncorrected Cauchy–Born rule within the over-
lap elements. The cross terms are those involving NQ̂Û in (74) and NQ̂U in (76). Without these terms, we find in
(101) that
RðiÞ
X

b:XðbÞ2~X
ðaÞ
0ðiÞ;

RðabÞ¼RðiÞ

N ðaÞðXðbÞÞ ! 0; ð113Þ
while the uncorrected Cauchy–Born rule (q(i) = 1) implies
1

V 0

½R� R�ðiÞ
Z
�XðaÞ
0ðiÞ

oN ðaÞ

oX
dXþ

Z
~X
ðaÞ
0ðiÞ

qðiÞ
oN ðaÞ

oX
dX

" #
! 1

V 0

½R� R�ðiÞ
Z
XðaÞ
0

oN ðaÞ

oX
dX ¼ 0; ð114Þ
meaning the internal forces on free and prescribed nodes coming from element-level forces, oPU

oU
and oPU

oÛ
, respec-

tively, are balanced. In effect, decoupling the atomistic and continuum analyses is accomplished by eliminating
the influence of ghost atoms on nodes that border overlap elements combined with treating the overlap
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element with the constitutive model derived from the normal Cauchy–Born rule as though the overlap element
has no underlying crystal lattice present. Thus, the correct solution for the displacement field is obtained with-
out regard to force cross terms. It is important to realize that both of the actions discussed above must be done
for this to be true. If ghost atom influence is eliminated and a corrected Cauchy–Born rule is used, or vice
versa, the solution obtained will be incorrect. It is also important to note that this ad hoc decoupling possesses
the distinct disadvantage that an expression for the system potential energy no longer exists.

7. Example calculations

For all the numerical examples in this section, we use the meshless method described in Section 4 to project
the fine scale solution from the atoms onto nodes in the overlaying finite element mesh. Solutions are calcu-
lated with a preconditioned conjugate gradient algorithm [23], using diagonal approximations to KQQ (60) and
KUU (62). All calculations are solved to a relative tolerance on the residual of
k½RQ;RU�TkðiÞ

k½RQ;RU�Tkð0Þ
< 10�12 ð115Þ
for the ith iterate of the solution. The calculations are performed using a research-oriented program capable of
both finite element analysis and atomistic simulation that was developed at Sandia National Laboratories [29].

7.1. One-dimensional examples

To demonstrate the key features of the coupling approach, consider the patch of a one-dimensional coupled
system shown in Fig. 4. The patch consists of the complete support of node (a), which is comprised of two
elements of dimension h, and a single pair bond of length R. For this system, bonds exist only between nearest
neighbor atoms. Hence, the subscript (i) may be omitted since only a single type of atomic bonds exists for all
atoms. The nodal shape function and derivative for this case is given by
N ðaÞðX Þ ¼
1� X ðaÞ�X

h ; X 2 ~X
ðaÞ
0 ;

1þ X ðaÞ�X
h ; X 2 �X

ðaÞ
0 ;

0; elsewhere;

8>><
>>: and

oN ðaÞðX Þ
oX

¼

1
h ; X 2 ~X

ðaÞ
0 ;

� 1
h ; X 2 �X

ðaÞ
0 ;

0; elsewhere;

8>><
>>: ð116Þ
respectively. Using (101) and setting f(a) = 0, we find the optimal bond density must satisfy
Z
~X
ðaÞ
0

q dX ¼ hð1� N ðaÞðX ðbÞÞÞ for X ðaÞ � h 6 X ðbÞ
6 X ðaÞ � hþ R; ð117Þ
which holds for
q ¼ 1� N ðaÞðX ðbÞÞ ð118Þ

over ~X

ðaÞ
0 . Note that in this case, the problem of determining q does not have a unique solution if q is discret-

ized with more than one unknown and more than one integration point is used to evaluate the left-hand side of
N(a)(X)

0

–
X(a)

Ω(a)
0

~Ω(a)

h

β

R

Fig. 4. Patch from a one-dimensional coupled system.
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(117). For this example, we can see how the bond density simply compensates for the overlap in the continuum
and the underlying lattice. As mentioned above, attributing fractions of a bond�s energy to certain domains
becomes ambiguous in multiple dimensions for which the general method for determining the bond density
distribution becomes necessary. This point was not addressed by the authors of [8], who examined only
one-dimensional chains of atoms with nearest neighbor interactions.

Fig. 5 shows the displacements of a coupled system composed of five nodes and five atoms. The sets
of nodes with free and prescribed displacements are N ¼ f4; 5g and N̂ ¼ f1; 2; 3g, respectively. The sets of
atoms with free and prescribed displacements are A ¼ f1; 2; 3; 4g and Â ¼ f5g, respectively. The chain of
atoms is bound by the quadratic potential uðrÞ ¼ 1

2
kðr � RÞ2 acting between nearest neighbors with R ¼ 1

2
.

From the Cauchy–Born rule, the elements, with dimension h = 1, have an initial modulus E = Rk. To dem-
onstrate the effect of the bond density function, we prescribe q(X) = 1, meaning no correction is made for
the overlap of elements and bonds between node 4 and atom 5. The system is loaded with the prescribed
displacements Qð1Þ ¼ X ð1Þ ¼ 1

4
and U(5) = X(5) = 4, so that the homogeneously deformed shape should have

a constant slope of 1. The results plotted in Fig. 5 show the coupled system does not deform homogeneously.
The reduced slope in the element 3–4 is the result of increased stiffness of this region over the other parts of the
system resulting from the overlap between bonds and elements. The slopes of the atomic chain 1–2–3–4 and
element 4–5 are the same indicating the stiffness produced by the Cauchy–Born model is consistent with the
lattice. Finally, we note that nodes 1, 2, and 3 lie on a straight line defined by displacements of the atomic
chain 1–2–3–4, indicating that the method used to transfer the atomistic displacement to the nodes in N̂,
an L2 projection in this case is able to reproduce homogeneous displacements exactly. In order to reproduce
the homogeneous solution, we must define qðX Þ ¼ 3

4
for 2 6 X 6 3, as given by (118).

The simple example shown above of the homogeneously stretched one-dimensional atomic chain was per-
formed using an L2 projection method. Because of the computational cost, we seek alternatives to calculating
M�1

ÛÛ
associated with the L2 projection of atomistic displacements to the nodes in N̂. One simple alternative is

to use a diagonal approximation toMÛÛ, which has the structure of a finite element mass matrix. A number of
‘‘lumping’’ methods has been developed for the solution of dynamic problems with explicit time integration
schemes. Fig. 6 shows the displacements for a coupled system with MÛÛ diagonalized using Hinton�s method
[30]. The results show that although all of the nodes in N and atoms in A follow the homogeneous solution
Q(X) = U(X) = X, the nodes and atoms with prescribed motion, those in N̂ and Â, respectively, do not fol-
low the homogeneous solution. This solution is produced by defining the bond density qðX Þ ¼ 6

11
for 2 6 X 6 3

and by weighting the energy of bond 4–5 as 16
7
, which are determined by requiring oP

oQð4Þ ¼ 0 and oP
oU ð4Þ ¼ 0 for the

system with all active displacements following a homogeneously deformed solution. The additional weight of
the 4–5 bond is required because the approximate L2 projection, using the diagonalized form ofMÛÛ, is unable
to reproduce homogeneous solutions exactly. The displacement field across nodes 1, 2, and 3 does vary homo-
geneously, but not with the correct slope. Consequently, atom 5 fails to lie on the solution with homogeneous
deformation since it is constrained to lie on the solution between nodes 3 and 4. Further testing with this small
1
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Fig. 5. Homogeneous displacements of the one-dimensional coupled system for both the corrected bond density of qðX Þ ¼ 3
4
and the

uncorrected bond density of q(X) = 1. Free nodes, projected nodes, free atoms and ghost atoms are shown, respectively, ash,j,s andd.
Atom and element numbers are given within the figure by the digit shown above or below, respectively, the corresponding part.
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case showed that no diagonal matrix could reproduce the homogeneous strain field exactly, as is required for
the development of the Cauchy–Born correction in Section 5. These results enable us to conclude that use of
diagonalized MÛÛ is not recommended. Either the original, L2 projection method or the MLS alternative
should be used.

We also examine a one-dimensional atomic chain with atoms subject to multiple neighbor interactions. For
this example, we use the Lennard-Jones potential [31,32] that has been truncated [33] to a fifth nearest neigh-
bor interaction. In this simulation, the chain has been given free boundary conditions on the atoms at either
end and the system has been relaxed using a conjugate gradient, energy minimization algorithm. Fig. 7 shows
the bond density correction calculated for each of the five different bond types. For clarity, the crystal itself is
also shown with the same symbols as in Fig. 1 used for free and prescribed atoms and nodes. For the example
shown, the four outer-most atoms on either end are free atoms while the remaining atoms are ghost atoms. In
this example, it is clear how the volume ~X

ðaÞ
0ðiÞ differs with regard to each different bond type (i). It is also inter-

esting to note that for this small system, ghost atoms are required within all elements in the interior due to the
long range of the interatomic potential. Even within the center element q(5), the bond density correction asso-
ciated with the bonds between an atom and its fifth nearest neighbors, never reaches the value of unity as
ghost-free bonds are present. However, if the chain were made longer, we would see elements for which
q(i) = 1 for all 5 bond families, and ghost atoms could be omitted. In other words, the overlap region would
essentially remain the same size that it is in Fig. 7 while more and more of the system can be modeled using
pure continuum elements. Fig. 8 shows atomic displacements for two such longer one-dimensional atomic
chains. In Fig. 8(a), the ratio of element size to atomic spacing is 2:1 and the system contains 26 atoms, 14
nodes and 13 elements. In Fig. 8(b), this ratio is 6:1 and the system contains 30 atoms, 6 nodes and 5 elements.
In both figures, we see that without any free atoms on the surface, the system displays zero relaxation, and as
successively more free atoms are used at the outer layers, the displacement field converges to that of a pure
atomistic one-dimensional atomic chain. For the 2:1 ratio, this convergence occurs for 4 or more layers of free
atoms while for the 6:1 ratio, it occurs for 6 layers of free atoms. Thus, the ratio of element size to atomic
ρ1.0

0.5

ρ(1)
ρ(2)
ρ(3)
ρ(4)
ρ(5)

Fig. 7. q(i)(X) for a one-dimensional atomic chain using a fifth nearest neighbor Lennard-Jones potential. Free nodes, projected nodes, free
atoms and ghost atoms are shown, respectively, as h, j, s and d.
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spacing, as well as the interaction range of the interatomic potential, affects how many layers of free atoms are
needed to achieve this convergence.

7.2. Two-dimensional examples

We next examine the two-dimensional analog of the homogeneous deformation example given in the pre-
vious section. A rectangular region covered by a finite element mesh composed of four-node elements contains
a limited region of atoms from a hexagonal crystal lattice, as shown in Fig. 9(a). These atoms interact through
a nearest neighbor, quadratic potential. This region is homogeneously deformed by stretching the system�s
boundaries in the horizontal direction, as shown in Fig. 9(b). As mentioned in Section 6, this case proves
to be unaffected by whether the cross terms in Eqs. (58) and (59) are included or not. For homogeneous defor-
mation, the force coupling cross term between projected nodes and free atoms disappears,
Fig. 9.
lattice.
homog
(For in
RÛ ¼ 0 ! RQ ¼ oPQ

oQ
� FQ ¼ 0. ð119Þ
This decouples the displacement of the atoms from the displacement of the overlaying finite element mesh.
Indeed, the correct displacement field for the free nodes is obtained if one assumes
RQ̂ ¼ 0 ! RU ¼ oPU

oU

����
q¼1

� FU ¼ 0. ð120Þ
(a) The two-dimensional coupled system consisting of a rectangular mesh of quadrilateral elements and a portion of a hexagonal
Atoms are colored according to whether they are free (red) or ghost (green and blue). (b) The two-dimensional system
eneously stretched in the horizontal direction. Color denotes the magnitude of stretch from zero (blue) to the highest value (red).
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In other words, the correct solutions for both the atomic and nodal displacement fields are obtained by treat-
ing them as separate problems. Their only connection is to use the Cauchy–Born rule to create the same mate-
rial properties for the continuum as for the atomistic system, and the kinematic coupling used for
interpolation and projection. Once again, it is important to realize that (120) results from eliminating the cross
terms to calculate forces on free nodes due to ghost atoms and by setting bond densities, {q(i)}, to unity. Only
by omitting both coupling mechanisms is the correct FE solution realized. In addition, this decoupling of the
problem is possible because the interatomic potential used is a nearest neighbor interaction only. Thus, the
atomic crystal shown in Fig. 9 exhibits no surface relaxation and the Cauchy–Born model based on the same
interatomic potential displays the same response as the actual crystal. For longer-ranged potentials, surface
relaxation would occur and the deformations of the decoupled atomistic and continuum systems would no
longer coincide.

A case for which the cross terms are important, and the correction for energy of overlapping elements is
required to obtain the correct displacement solution, is one in which inhomogeneous deformation occurs, such
as the relaxation of a crystal with free surfaces. Fig. 10(a) shows a system composed of a hexagonal lattice with
free surfaces overlapped by a quadrilateral mesh. For the coupled system, the atoms that lie within the outer
layer of elements are free atoms while all other elements contain ghost atoms. For this example, our potential
is the Lennard-Jones potential [31,32] that has been shifted and truncated [33] such that an atom that interacts
with all of its neighbors out to the 3rd nearest neighbor is equivalent to an atom within a bulk crystal. The
system relaxes outward as shown in Fig. 10(b). The coupled system (red atoms) can be directly compared with
a system simulated purely with atomistics (green atoms). Agreement is very good, but not perfect due to the
severe inhomogeneous deformation at the corners.

In general, a minimum coverage of ghost atoms should be used as only ghost atoms that are within the
interaction range (for the choice of interatomic potential) of free atoms are necessary. While the examples
shown in this paper contain all atoms for all analyses, this was done strictly for illustration purposes to allow
easy comparison of the coupled results with purely atomistic calculations. It is important to realize that pres-
ence of extraneous ghost atoms was not required to obtain a solution. Although excess computational work is
done from interpolation of the coarse scale displacement field to these atoms, the cost of calculating the bond
density corrections does not increase.

This two-dimensional surface relaxation problem also enables us to investigate the influence of the overlap-
ping mesh on the coupled solution. Specifically, we examine a system in which triangular elements are used
instead of quadrilateral ones. The mesh for this system is shown in Fig. 11(a). We notice that this system con-
tains fewer atoms per element (202 atoms overlapped by 52 elements) as compared with the quadrilateral mesh
(202 atoms overlapped by 25 elements). Fig. 11(b) shows the relaxed system with displacements magnified by a
factor of 200 for both the coupled (red atoms) and purely atomistic (green atoms) systems. For this case, the
displacement fields do not agree as well as for the quadrilateral mesh. One reason for the deficiency of
the triangular mesh system is that while quadrilateral elements use four integration points per element for
the FE calculation, triangular elements only use one point per element. The use of a single integration point
reduces the spatial discretization of {q(i)} and results in a lower resolution representation of the coarse scale
Fig. 10. (a) A two-dimensional, hexagonal lattice with free surfaces composed of free (green) and ghost (blue) atoms. The overlapping
quadrilateral mesh is shown in red. (b) The relaxed configuration of (a) for the coupled system (red) and a system treated purely with
atomistics (green). Displacements are magnified by a factor of 200. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



Fig. 11. (a) A two-dimensional, hexagonal lattice with free surfaces composed of free (green) and ghost (blue) atoms. The overlapping
triangular FE mesh is shown in red. (b) The relaxed configuration of (a) for the coupled system (red) and a system treated purely with
atomistics (green). Displacements are magnified by a factor of 200. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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portion of the solution. Also, triangular elements can only represent strains that are constant over the element.
These factors lead to a loss of accuracy in the calculation of continuum field variables, and produce a stiffer
overall response for the element.

7.3. Three-dimensional examples

A similar surface relaxation simulation is performed for the three-dimensional system composed of a cube
of atoms. This cube contains a face-centered-cubic crystal of 32,000 atoms, and atoms interact with a fifth
nearest neighbor Lennard-Jones potential with parameters suitable for the simulation of gold. This potential
is given by the expression
Fig. 12
(c) cou
uðrabÞ ¼ uLJðrabÞ � uLJðrcÞ � ½rab � rc�u0
LJðrcÞ; ð121Þ
where
uLJðrÞ ¼ 4�
r
r

� �12

� r
r

� �6
� �

; ð122Þ
rab = |x(a) � x(b)|, � = 0.567895 eV, r = 2.623117 Å and rc = 2.63r. Magnified displacements for half of the
cube are shown in Figs. 12(a)–(c) for the purely atomistic system, coupled atomistic–continuum systems with
hexahedral elements, and coupled system with tetrahedral elements, respectively. The ratio of element size to
atomic spacing is approximately the same for calculations using the hexahedral (5.34:1) and tetrahedral
(5.33:1) elements. In Fig. 12, atoms are colored according to their potential energy with red denoting the high-
est value for all atoms and blue denoting the lowest value. In Fig. 12(a), the highest potential energy atoms are
found at the cube corners (colored red) and along the cube edges (colored yellow). The interior atoms possess
the bulk potential energy of gold atoms, �3.93 eV, and are colored dark blue. In Fig. 12(b), interior ghost
. One-half of a cube modeled with (a) pure atomistics, (b) coupled atomistics–continuum using a hexahedral element mesh, and
pled atomistics–continuum using a tetrahedral element mesh. Displacements are magnified by a factor of 200.



P.A. Klein, J.A. Zimmerman / Journal of Computational Physics 213 (2006) 86–116 111
atoms are also colored red and dark orange as they do not have any potential energy attributed to them unless
bonded to free atoms in the outer layers. It is still observed that free atoms sufficiently far from the surface
have potential energies equal to the bulk cohesive energy for gold, and that surface, edge and corner atoms
have higher potential energies. Comparison of potential energies for the free atoms in the coupled system with
the same respective atoms in the purely atomistic system shows agreement to the fourth significant figure.
Atomic potential energy is dominated by the creation of surfaces, while a change in energy due to relaxation
is a secondary effect.

Fig. 12(c) shows similar values of energies to those found in Fig. 12(b), again agreeing with the purely atom-
istic system�s energies to the fourth significant figure. However, the relaxed configuration with the tetrahedral
mesh does not display the same level of accuracy as with the hexahedral mesh. Once again, this loss of accu-
racy is due to the hexahedral elements possessing the ability to represent varying strain while the tetrahedral
elements have only a single integration point at which the bond density is determined and can only represent
constant strain.

Further comparison between the purely atomistic and coupled systems can be made through examination
of the stress field created by the surface relaxation. Fig. 13 shows the variation of the hydrostatic stress for
nodes along a line passing through the middle of the cube between opposing faces. The different curves cor-
respond with the numbers of surface layers of free atoms, with 20 layers corresponding to the purely atomistic
system. It is observed that when 6 or more atomic layers are used within the atomic region, the coupled system
essentially matches the stress field obtained with pure atomistics, especially with regard to the value of tensile
stress within the outer layers of the cube. The interior compressive stress also agrees very well, especially for
the use of 6 or 8 atomic layers. For comparison, we can also examine the same hydrostatic stress curves pro-
duced for system coupled only through kinematics. For these analyses, neither the cross terms nor the bond
density corrections to the Cauchy–Born rule are used. As shown in Fig. 14, we observe that the interior com-
pressive stress agrees best when using 6 or 8 atomic layers and overall, agreement is not as good as when force
coupling mechanisms are implemented. This is made obvious by the much wider range of values of compres-
sive stress for the nodes within the cube.

7.4. Analysis of computational cost

The numerical examples in Sections 7.1–7.3 are selected to highlight the basic characteristics of the coupling
approach. As such, they are too small to provide a representative demonstration of the computational effi-
ciency of the method. In particular, they have a much larger atomistic region compared with the continuum
region than we would expect in typical applications of coupled analysis. Also, the region of ‘‘overlap’’ is large
compared to the total size of the computational domain. Finally, the ratio of the element dimension to the
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Fig. 13. Hydrostatic stress for nodes along a line passing through the middle of the relaxed cube. The legend refers to the number of layers
of free atoms used for the outer surface of the crystal.
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bond length is smaller than would be optimal for a large scale calculations, and generally, the element size
would be nonuniform, increasing with distance from the atomistic regions.

Nevertheless, we use the three-dimensional example presented in Section 7.3 to provide some illustration of
the computational cost of the coupled approach. The crystal contains a total of natomtotal ¼ 32;000 atoms. For the
coarse scale problem, we discretize the cubic domain into nelement

total ¼ 153 ¼ 3375 hexahedral elements, for an
average of 9.5 atoms per element. The coarse scale problem is solved with a total Lagrangian, finite deforma-
tion element formulation using eight integration points per element. Since the cost of computing the integra-
tion point stress using the Cauchy–Born rule is comparable to the cost of computing the total force on an
atom, we would generally select the element dimension so that the number of atoms replaced with elements
would be substantially greater than the number of integration points.

We use the time required for a single evaluation of the total force acting on the atoms and nodes in the
system for a detailed analysis of the computational cost of the coupled approach. For both quasistatic and
dynamic analyses, the repeated evaluation of the system force will comprise the majority of the computational
cost. Using the moving least square projection of atomistic information onto the coarse scale described in Sec-
tion 4, the force acting on the atoms and nodes is given by (58) and (59), respectively. Recall that in these
expressions,

oPQ

oQ
represents the force on atoms due to atomic bonds, oPU

oU
represents the finite element-derived,

coarse scale forces on the nodes, and all other contributions to the forces, aside from the externally applied
forces FQ and FU, are due to coupling. Forces on ghost atoms

oPQ

oQ̂
and projected nodes oPU

oÛ
are computed

together with and as part of the forces acting on free atoms and nodes. Therefore, the cost of these terms
is difficult to isolate and is instead included with the cost of the atomistic and coarse scale computations,
respectively. The costs that can be associated strictly with the coupling terms are limited to the product of
force vectors with the shape function matrices given in (58) and (59).

Fig. 15 shows how the contributions to the computational cost for each evaluation of the system force
change with the number of atomistic layers in the crystal. The number of layers is counted from the surface
inward, reaching 20 layers when the entire domain is represented atomistically. The times are normalized by
tatomF , the time required for a single evaluation of the force in a purely atomistic calculation. Comparing a
purely atomistic calculation to a purely finite element calculation over the entire domain, we find that on a
per volume basis the ratio of the costs for a single evaluation in the finite element and atomistic forces is
tcoarseF =tatomF ¼ 0:80, which is comparable to but slightly better than the 0.84 ratio of integration points to atoms
per unit volume. Curves (1)–(3) show the computational time for a single evaluation of the atomistic, coarse
scale, and coupling terms in the system force, respectively. The total time is shown by curve (4). As we would
expect, the cost of the atomistic part of the calculation increases with more atomic layers, while the cost of the
coarse scale calculation decreases. The cost of the coupling terms stays relatively small, decreasing from
approximately 3% to 2% of tatomF as the number of atomic layers decreases from 20 to 2. Since atomistic layers
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are replaced with coarse scale calculations that for the given element dimensions have approximately the same
cost per volume, the total cost for each evaluation of the force does not change dramatically with differing
numbers of atomistic layers.

Curves (1a), (2a), and (2b) in Fig. 15 demonstrate how we would expect the computational cost to vary
based on a per volume scaling of the purely atomistic and purely finite element calculations. Curve (1a) is
the time tatomF for a single evaluation of the force in a purely atomistic calculation scaled by the relative number
of free atoms in the coupled system natom=natomtotal . Comparing curves (1) and (1a), the cost of this part of the
calculation scales clearly with the number of free atoms, and there is little effect associated with calculation
of forces on ghost atoms. Curve (2a) is the time tcoarseF for the purely finite element calculation scaled by the
volume fraction of the system not represented with atoms 1� natom=natomtotal . Comparing curves (2) and (2a),
we do see that the coarse scale part of the coupled calculation displays additional costs associated with the
overlap region. Curve (2) also displays a higher degree of nonsmoothness compared with curve (1). The cal-
culations with 3, 6, 8, and 11 layers appear more efficient than those with 2, 5, 7, and 10 layers. Curve (2b) is
constructed by scaling the difference between curves (2) and (2a) by the relative thickness of the overlap layer.
Because the geometry used for this calculation does not produce a simple planar boundary between the atom-
istic and continuum regions, a measure of the effective thickness of the overlap is calculated from the volume
of the overlap layer, determined from the number of elements in the overlap, and its effective area, determined
from the surface area of the cube separating the free and ghost atoms. Comparing curves (2a) and (2b) reveals
that the reduced efficiency is associated with additional thickness of the overlap region. As curve (2a) shows,
the thickness varies depending on where the crystal is terminated with respect to the element boundaries. With
3 atomic layers, the outer most layer of elements in the cube is completely filled with free atoms, and the ghost
atoms are contained only in the second layer of elements from the surface. This configuration yields 866 ele-
ments in the overlap region. Using just 2 atomic layers, the interaction range of the atomistic potential dictates
that the outer two layers of elements contain ghost atoms, meaning 2040 of the 3375 elements in the mesh par-
ticipate in the overlap.

There are additional costs associated with coupled simulations beyond the force calculation described in
Fig. 15. The most significant among these is determination of the bond densities in the overlap layer, which
involves minimization of a bound constrained problem for a system that is otherwise linear in the unknowns.
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These densities need to be determined only once for a given overlap configuration. The formulation requires
determination of the density for each bond family at each integration point of elements in the overlap layer.
The fifth neighbor potential used for the example in Section 7.3 has 39 bond families. Developing efficient
methods for solving these densities is a topic of our future work. There are also costs associated with initial-
izing the projection and interpolation operations. This involves mapping the atomic positions into elements in
the mesh, determining domains of influence for the moving least squares fits, and calculation of the meshless
shape functions. As with the bond densities, these quantities need to be determined only once for a given over-
lap configuration. In our example calculations, the cost of this initialization ranges from approximately 3 to 18
tatomF as the number of atomic layers increases from 2 to 20.

In this section, we present an analysis of the computational cost using a configuration for which the atom-
istic and coarse scale calculations have approximately the same cost on a per volume basis. Generally, the
reduction in cost achieved by using a coarse scale representation of an atomistic crystal scales as (h/a0)

3, where
h is the element dimension and a0 is the lattice parameter, which quickly becomes dramatic as the element
dimension increases. Our results indicate that for a larger system in which the atomistic region comprises just
a small fraction of the total system volume, the cost of computing the coupling contributions to the system
force will be small compared with the significant saving in computational cost gained by reducing the number
of atoms in the system.

8. Summary

We have presented a formulation for an atomistic-to-finite element coupling method comprised of three
components:

� Kinematics – the description of how displacements are transferred from nodes and atoms in N and A to
nodes and atoms inN̂ and Â.

� Coupled equilibrium equations – equations derived from the total energy of the coupled system incorpo-
rating the kinematics of the coupling in displacements.

� Generalized Cauchy–Born – modifications to the usual Cauchy–Born rule needed to compensate for
regions of overlap between the continuum and the underlying lattice.

The moving least squares field construction, like that provided by RKPM, appears the most promising for
the projection of atomistic displacements to the nodes in N̂. The formulation provides a method for ‘‘fitting’’
a displacement field over atoms in a given region that can be constructed to reproduce a selected order of poly-
nomials exactly. This property can be used to guarantee that a homogeneous deformation field is transferred
to the nodes exactly. Moreover, RKPM has well-defined spectral properties, especially when calculated over a
regular set of points, such as a lattice. These properties will allow us to characterize exactly which scale or
wavelength of information is transferred to the finite element nodes and which ones need to be accommodated
in some other fashion.

The most significant outcome of this work has been the development of a generalized Cauchy–Born pro-
cedure for use in finite elements with a limited amount of underlying crystal lattice. The method does suggest
it should yield better performance with mesh refinement. The improved results would be the result not only of
the finer scale in the finite element basis function, but also as a result of higher resolution in the discretized
bond density function. Note that this function only needs to be determined once, over the undeformed con-
figuration, for a given system geometry.

We do observe that the approach described in this paper, specifically the inclusion of force cross terms with-
in the equilibrium equations and the bond density corrections to the Cauchy–Born rule, does possess good
stability with regard to yielding a numerical solution. Omission of these features often results in energy min-
imization algorithms failing to converge to any solution for many of the systems described in this paper. This
failure is highly dependent on the orientation of the mesh with respect to the underlying atomic lattice and the
size of lattice region used. Under limited conditions and when considering only nearest-neighbor interactions,
the issue of overlap correction can be addressed by terminating the atomistic crystal in specific ways within the
mesh. This approach has allowed previous efforts in atomistic–continuum coupling to produce accurate
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results. Our development and inclusion of these features eliminates this dependency, and is more generalized
for the proper treatment of multi-dimensional systems and longer range potentials.

A remaining concern with this approach, to be addressed in future work, regards the quantification of solu-
tion errors obtained with coupled systems. We have minimized the error through our use of cross terms within
the equilibrium equations and the bond density corrections to the Cauchy–Born rule. However, several
approximations are made to obtain solutions for those same bond density corrections, including the use of
a limited number of integration points at which the bond densities q(i) are evaluated. Whether the error these
approximations introduce to our solution is much smaller than error eliminated by our approach remains an
unanswered question.

Rigorous testing of the approach presented in this paper is also warranted to assess its performance when
applied to materials simulations ubiquitous to the field of coupled simulations. Examples of such simulations
include crack growth [7,13,34] and nanoindentation [35–37] in both brittle [7,13,36] and ductile [34,35,37]
materials. Our method would be useful for the analysis of nano-scale wires and films and polycrystalline mate-
rials. For these types of systems, the regions interior to either free surfaces or grain boundaries would be mod-
eled with finite elements while the regions near the structural inhomogeneities would be modeled with atoms.
The overlap region should not intersect either grain boundaries or other crystal defects as the energy of any
such defect would be artificially minimized by the bond density correction calculations. Also, this method does
require that any continuum region enclosed by atomistic boundaries possess a single crystal orientation, while
disconnected continuum regions may differ in this orientation. Proper use of our coupled method for these
systems would enable treatment of geometries with dimensions up to several hundred nanometers and even
the micron range.

Several areas for further development of our approach have been identified. Currently, we are working to
parallelize the algorithms discussed in this paper for application to large systems. We also plan to apply the
approach for solving the bond density corrections to multi-body types of interatomic potentials such as the
embedded atom method [38], used for modeling FCC and BCC crystals, and the Stillinger–Weber potential
[39], used for modeling silicon and other materials with the diamond cubic crystal structure. Finally, the meth-
odology presented in this paper will be adapted to analyze coupled dynamic systems. The bond density cor-
rections developed here will still be used to compute the potential energy portion of the system�s Hamiltonian,
but more thought will be required with regard to the partitioning and calculation of the kinetic energy portion.
Acknowledgments

The authors gratefully acknowledge input provided by discussions with Gregory J. Wagner, Reese E. Jones,
Christopher J. Kimmer, Jeffrey J. Hoyt, Edmund B. Webb III and Sylvie Aubry of Sandia National Labora-
tories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy�s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

References

[1] Materials research by means of multiscale computer simulation, Bulletin, Materials Research Society, March, 2001.
[2] J. Fish, Z. Yuan, Multiscale enrichment based on partition of unity, International Journal of Numerical Methods in Engineering 62

(10) (2005) 1341–1359.
[3] S. Kohlhoff, S. Schmauder, A new method for coupled elastic-atomistic modelling, in: V. Vitek, D.J. Srolovitz (Eds.), Atomistic

Simulation of Materials: Beyond Pair Potentials, Plenum Press, New York, 1989, pp. 411–418.
[4] S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Crack propagation in BCC crystals studied with a combined finite-element and

atomistic model, Philosophical Magazine A 64 (1991) 851–878.
[5] E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philosophical Magazine A 73 (6) (1996) 1529–1563.
[6] R.E. Rudd, J.Q. Broughton, Coarse-grained molecular dynamics and the atomic limit of finite elements, Physical Review B 58 (1998)

R5893–R5896.
[7] J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Concurrent coupling of length scales: methodology and application,

Physical Review B 60 (1999) 2391–2403.
[8] G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, Journal of

Computational Physics 190 (2003) 249–274.



116 P.A. Klein, J.A. Zimmerman / Journal of Computational Physics 213 (2006) 86–116
[9] L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Wiley, New York, 1969.
[10] K. Huang, On the atomic theory of elasticity, Proceedings of the Royal Society of London A 203 (1950) 178–194.
[11] M. Born, K. Huang, Dynamical Theories of Crystal Lattices, Clarendon Press, Oxford, 1956.
[12] R.E. Rudd, Coarse-grained molecular dynamics: dissipation due to internal modes, in: Thin Films: Stresses and Mechanical

Properties IXMaterials Research Society Symposium Proceedings, vol. 695, Materials Research Society, 2002, pp. 499–504.
[13] H.S. Park, E.G. Karpov, W.K. Liu, P.A. Klein, The bridging scale for two-dimensional atomistic/continuum coupling, Philosophical

Magazine 85 (1) (2005) 79–113.
[14] H.S. Park, E.G. Karpov, P.A. Klein, W.K. Liu, Three-dimensional bridging scale analysis of dynamic fracture, Journal of

Computational Physics 207 (2) (2005) 588–609.
[15] S.P. Xiao, T. Belytschko, A bridging domain method for coupling continua with molecular dynamics, Computer Methods in Applied

Mechanics and Engineering 193 (2004) 1645–1669.
[16] W.A. Curtin, R.A. Miller, Atomistic/continuum coupling in computational materials science, Modelling and Simulation in Materials

Science and Engineering 11 (2003) R33–R68.
[17] V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element approach to atomic-scale

mechanics – the quasicontinuum method, Journal of the Mechanics and Physics of Solids 47 (1999) 611–642.
[18] J. Knap, M. Ortiz, An analysis of the quasicontinuum method, Journal of the Mechanics and Physics of Solids 49 (2001) 1899–1923.
[19] I. Stakgold, The Cauchy relations in a molecular theory of elasticity, Quarterly of Applied Mechanics 8 (1950) 169–186.
[20] E.B. Tadmor, G.S. Smith, N. Bernstein, E. Kaxiras, Mixed finite element and atomistic formulation for complex crystals, Physical

Review B 59 (1) (1999) 235–245.
[21] P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The elastic modulus of single-wall carbon nanotubes: a continuum

analysis incorporating interatomic potentials, International Journal of Solids and Structures 39 (2002) 3893–3906.
[22] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs,

NJ, 1987.
[23] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain (1994). Available from: <http://

www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf>.
[24] W.K. Liu, Y. Chen, S. Jun, J.S. Chen, T. Belytschko, C. Pan, R.A. Uras, C.T. Chang, Overview and applications of the reproducing

kernel particle methods, Archives of Computational Methods in Engineering: State of the Art Reviews 3 (1996) 3–80.
[25] W.K. Liu, Y. Chen, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids 20 (1995) 1081–

1106.
[26] H. Gao, P. Klein, Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, Journal of the

Mechanics and Physics of Solids 46 (2) (1998) 187–218.
[27] P. Klein, H. Gao, Crack nucleation and growth as strain localization in a virtual-bond continuum, Engineering Fracture Mechanics

61 (1998) 21–48.
[28] H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.
[29] Tahoe, Sandia National Laboratories, 2004. Available from: <http://tahoe.ca.sandia.gov>.
[30] E. Hinton, T. Rock, O.C. Zienkiewicz, A note on mass lumping and related processes in the finite element method, Earthquake

Engineering and Structural Dynamics 4 (1976) 245–249.
[31] J.E. Lennard-Jones, The determination of molecular fields I. From the variation of the viscosity of a gas with temperature,

Proceedings of the Royal Society of London A 106 (1924) 441.
[32] J.E. Lennard-Jones, The determination of molecular fields II. From the equation of state of a gas, Proceedings of the Royal Society of

London A 106 (1924) 463.
[33] J.M. Haile, Molecular Dynamics Simulation Elementary Methods, Wiley, New York, 1992.
[34] R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum simulation of fracture at the atomic scale, Modelling and Simulation

in Materials Science and Engineering 6 (1998) 607–638.
[35] E.B. Tadmor, R. Miller, R. Phillips, M. Ortiz, Nanoindentation and incipient plasticity, Journal of Materials Research 14 (6) (1999)

2233–2250.
[36] G.S. Smith, E.B. Tadmor, N. Bernstein, E. Kaxiras, Multiscale simulations of silicon nanoindentation, Acta Materialia 49 (2001)

4089–4101.
[37] J. Knap, M. Ortiz, Effect of indenter-radius size on Au(0 0 1) nanoindentation, Physical Review Letters 90 (22) (2003) 226102.
[38] S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys,

Physical Review B 33 (1986) 7983–7991.
[39] F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B 31 (1985) 5262–

5271.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://tahoe.ca.sandia.gov

	Coupled atomistic - continuum simulations using arbitrary overlapping domains
	Introduction
	Kinematics of quasistatic coupling
	Coupled equilibrium equations
	Projection using moving least squares
	Correction to the Cauchy ndash Born rule in the overlap region
	Implications of the overlap correction
	Example calculations
	One-dimensional examples
	Two-dimensional examples
	Three-dimensional examples
	Analysis of computational cost

	Summary
	Acknowledgments
	References


